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Introduction -
Motivation

Atmospheric Radiative Transfer System - ARTS
ARTS Scattering Modules

Motivation

@ To simulate measurements by space-borne passive
mm-submm instruments in the presence of clouds.

e Aura-MLS, AMSU, Odin-SMR, JEM/SMILES, ...
@ RT model requirements

e Thermal atmospheric source (solar negligible)
e Scattering -> 3D geometry, polarization
e Limb Sounding -> spherical geometry
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ARTS Scattering Modules

Atmospheric Radiative Transfer System - ARTS

@ Stable version ARTS 1.0.x
@ Clear Sky only (1-D spherical shell)
@ spectroscopy, ray-tracing, clear-sky RT, sensor modelling
@ Development version ARTS 1.1.x (pre 2.0)
e Scattering
o 3D geometry
e Polarized RT
@ Some details
e developed in C++
e distributed with user guide, examples, and test cases
e Wiki - http://www.sat.uni-bremen.de/arts/wiki
e ARTS distribution freely available from
http://www.sat.uni-bremen.de/arts/
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Atmospheric Radiative Transfer System - ARTS
ARTS Scattering Modules

ARTS Scattering Modules

ARTS-1.1.x has two modules capable of 3D polarized radiative
transfer:
@ ARTS-DOIT Emde et al., J. Geophys. Res., 109(D24), D24207, 2004

e 1D or 3D Discrete Ordinates Iterative type model. Has
similarities with SHDOM and VDOM, except extended to
polarized RT and spherical geometry.

e Solves the radiation field for the whole scattering domain
(i.e. all angles, all grid points)

@ ARTS-MC Davis et al., IEEE T. Geosci. Remote, 43(6), 1096-1101, 2005

e Reversed Monte Carlo RT. Similar to Backward Forward
Monte Carlo model by Liu et al, but uses importance
sampling to properly account for polarization

@ Only solves for given position and viewing direction.

We have come to realise that ARTS-DOIT is NOT practical for
realistic 3D cases. The rest of the talk covers ARTS-MC
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ARTS-MC Algorithm Description
Implementation

Why Reversed Monte Carlo?

@ All computational effort is dedicated to calculating the
Stokes vector at the location of interest and in the direction
of interest.

@ CPU cost scales more slowly than other methods with grid
size. Large or detailed 3D scenarios are not a problem

@ Optically thick media are no problem.

@ Simple concept -> rapid development.
@ Why not DOM?

@ Big CPU cost in calculating unwanted radiances

o Cost scales badly with grid size

o Not well suited to spherical geometry

e Limb sounding requires a prohibitively fine angle grid.
@ Why not forward MC?

@ big source/small target

e optically thick medium makes this worse
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ARTS-MC Algorithm Description
Implementation

ARTS-MC: Algorithm Description

We are solving the Vector Radiative Transfer Equation

dld(;) :_K(n)l(n)+Ka(n)Ib(T)+Aﬂz(n7nr)|(n/)dn/ W

, Where | = [I,Q, U,V]T. We solve this by applying Monte Carlo
integration with importance sampling ...
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...to an integral form of the VRTE
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ARTS-MC Algorithm Description

Implementation

Begin at the cloud box exit point with a new CLOUD EXIT STOKES VECTOR
photon. Sample a path length, As along the NO YES

first line of sight using the PDF 1(n, s0) = O(ug, s0)I(n, ug) + (I'(n, s0))

Use this as the radiative background for final

kO (As)
As) = cloud-sensor clear sky RT
P39 = 101 s0) i
FINISH
SCATTERING
sample a new incident direction (.. dinc) ac-
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Zy1 (Oscat: Pscat: Gine: Pinc) SI0(Binc)
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BOUNDARY
Sample a new path length, As along the new
direction using the PDF YES Ti(n, so) = QuO (e, 1) I, uie)
. O (uy, sx)

9(As) = kOy1(As)

EMISSION
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NO CONYES )
r>or T'(n,so)
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ARTS-MC Algorithm Description
Implementation

Implementation

@ Atmospheric fields defined on Pressure, latitude, longitude
grids
@ Data I/O through ARTS specific XML file format (ascii or
binary)
@ Scattering properties calculated externally
(PYARTS/T-matrix)
@ scattering calculations confined to a subset of the
atmosphere - cloudbox
@ Currently there are two ARTS-MC Workspace Methods (I
will describe WSMs later)
e ScatteringMonteCarlo - as described in my paper; pencil
beam only, blackbody surface.
e MCGeneral - small changes to allow for surface reflection
and 2D antenna functions

Davis, Buehler, Eriksson, Emde ARTS



Control File Example
Using ARTS PyARTS

Control File Example

@ Control files specify a sequence of
commands in the ARTS “workspace”

@ ARTS has predefined workspace
variables. These can be listed by
“arts -w all”, and a description
retrieved by “arts -d varname”, e.g.

[cory@sundog bin]$ arts -d f_grid

*. *

Workspace variable = f_grid

The frequency grid for monochromatic pencil beam calculations.
Usage: Set by the user.

Unit: Hz
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Control File Example
Using ARTS PyARTS

Control File Example

@ User can combine a sequence of
“workspace methods” (WSM) to
perform a variety of tasks e.g.
1D/3D clear/cloudy RT, propagation
path calculation, interpolation of
atmospheric fields onto new grids,...

@ This example performs 3D RT with
scattering, using the “MCGeneral”
WSM

@ MCGeneral has several keyword
arguments, most of which determine
the termination criteria. desired
standard error, maximum time, or
number of “photons”.

simpleMCGeneral.arts

File Edit Options Buffers Tools Insert Help

f L G @ @ ?
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Control File Example
Using ARTS PyARTS

is a python package which: calculates single scattering
properties for non spherical hydrometeors (Mishchenko’s
T-matrix, Warrens REFICE), includes size distributions (e.g.
MH 97), prepares everything else needed for ARTS scenarios,
and acts as a front-end to ARTS.

MCwith3Dboxcloud.py

@ ARTS control files are flexible but
not very nice, preceding example > |t
180 lines

@ This PYARTS example calculates
scattering properties, creates grids,
cloud field, and does MC RT
simulation (on 2 processors).

@ python => can be used interactively.
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AMSU-B simulations
EOS-MLS simulations

Examples of ARTS use

AMSU-B simulations

@ UM output
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Mesoscale model output, and AMSU-B observations provided by Dr. Amy Doherty, MetOffice
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AMSU-B simulations
EOS-MLS simulations

Examples of ARTS use

Aura MLS - Polarization

@ MLS has both H and V
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AMSU-B simulations
EOS-MLS simulations

Examples of ARTS use

Aura MLS - Polarized observations at 122 GHz

Observations qualitatively similar to simulations - but
polarization signal small

-90 -45 0 45 90 -90 -45 0 45 90 -90 -45 0 45 90 -90 -45 0 45 90 -90 45 0 45 90
lat. lat. lat. lat. lat.

What does this say about shape/orientation?
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AMSU-B simulations
EOS-MLS simulations

Examples of ARTS use

Aura MLS - Interpretting Polarization

Effect of preferential orientation is mainly determined in this case by
the ratio %,2 and can be replicated by taking a single particle type,
horizontally oriented, and modifying the aspect ratio. Easiest to use
oblate spheroids.

. . tangent height: 3 km
@ Comparison with ARTS 3 9 : ? T
simulations for 1D and 3D
scenarios shows that data is { —35AR=10
nsistent with tratiosin  _ — 3D, AR=12
consiste aspect ratios = — 35 aR12
the range 1.2 + 0.15 > 1 =--1D,AR=1.0
== 1D, AR.=1.1
@ Random orientation assumption | - ipAR=l2
used in operational retrievals . . .| - observations
seems OK for this cloud type 1o e = —
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AMSU-B simulations
EOS-MLS simulations

Examples of ARTS use

Aura MLS - 3D effects

IWC retrievals obtain IWC from ATg, = Tcioudy — Tclear, this
conversion is based on results from very limited 1D simulations.
These 3D simulations show that the use of a 1D model will result in
large errors.

Influence of cloud on total radiance

3D tropical cirrus scenario for ARTS calculations: 20.20.20
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Future work

@ Use ARTS-MC to improve Aura-MLS cloud products

@ Build-up a very large data-set of simulated observations,
with a representative distribution of atmospheric scenarios.

@ This will allow the trial of different retrieval methods,
regression, MCI (Evans), Neural Net.

@ More robust cloud products with better error
characterisation.
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@ ARTS Developers: Stefan Buehler, Patrick Eriksson,
Claudia Emde, Oliver Lemke, Sreerekha Rauvi,...

JPL folk: Dong Wu, Jonathan Jiang
T-matrix: Michael Mishchenko

Model Validation: Alessandro Battaglia
UM data: Amy Doherty

Funding: NERC

Davis, Buehler, Eriksson, Emde ARTS



	Introduction
	Motivation
	Atmospheric Radiative Transfer System - ARTS
	ARTS Scattering Modules

	ARTS-MC
	Algorithm Description
	Implementation

	Using ARTS
	Control File Example
	PyARTS

	Examples of ARTS use
	AMSU-B simulations
	EOS-MLS simulations

	
	

